Minimum Bayes Risk decoding and system combination based on a recursion for edit distance

نویسندگان

  • Haihua Xu
  • Daniel Povey
  • Lidia Mangu
  • Jie Zhu
چکیده

In this paper we describe a method that can be used for Minimum Bayes Risk (MBR) decoding for speech recognition. Our algorithm can take as input either a single lattice, or multiple lattices for system combination. It has similar functionality to the widely used Consensus method, but has a clearer theoretical basis and appears to give better results both for MBR decoding and system combination. Many different approximations have been described to solve the MBR decoding problem, which is very difficult from an optimization point of view. Our proposed method solves the problem through a novel forward-backwards recursion on the lattice, not requiring time markings. We prove that our algorithm iteratively improves a bound on the Bayes Risk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Task-specific minimum Bayes-risk decoding using learned edit distance

This paper extends the minimum Bayes-risk framework to incorporate a loss function specific to the task and the ASR system. The errors are modeled as a noisy channel and the parameters are learned from the data. The resulting loss function is used in the risk criterion for decoding. Experiments on a large vocabulary conversational speech recognition system demonstrate significant gains of about...

متن کامل

Bayes risk decoding and its application to system combination

Speech recognition is the task of converting an acoustic signal, which contains speech, to written text. The error of a speech recognition system is measured in the number of words in which the recognized and the spoken text differ. This work investigates and develops decoding and system combination approaches within the Bayes risk decoding framework with the objective of reducing the number of...

متن کامل

Mixture Model-based Minimum Bayes Risk Decoding using Multiple Machine Translation Systems

We present Mixture Model-based Minimum Bayes Risk (MMMBR) decoding, an approach that makes use of multiple SMT systems to improve translation accuracy. Unlike existing MBR decoding methods defined on the basis of single SMT systems, an MMMBR decoder reranks translation outputs in the combined search space of multiple systems using the MBR decision rule and a mixture distribution of component SM...

متن کامل

Minimum Bayes-risk System Combination

We present minimum Bayes-risk system combination, a method that integrates consensus decoding and system combination into a unified multi-system minimum Bayes-risk (MBR) technique. Unlike other MBR methods that re-rank translations of a single SMT system, MBR system combination uses the MBR decision rule and a linear combination of the component systems’ probability distributions to search for ...

متن کامل

Generalized Minimum Bayes Risk System Combination

Minimum Bayes Risk (MBR) has been used as a decision rule for both singlesystem decoding and system combination in machine translation. For system combination, we argue that common MBR implementations are actually not correct, since probabilities in the hypothesis space cannot be reliably estimated. These implementations achieve the effect of consensus decoding (which may be beneficial in its o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Speech & Language

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2011